

The Minos Experiment

G.F. Pearce Rutherford Appleton Laboratory

- Overview
- NUMI Beam
- Minos Detectors
- Physics Capabilities
- First (non-beam) Data

The MINOS Collaboration

175 physicists from 31 institutes in 5 countries

Russia

Greece

U.S.A.

Brazil

France

Argonne – Athens – Brookhaven – Caltech – Cambridge – Campinas – Fermilab – College de France – Harvard – IIT – Indiana – ITEP Moscow – Lebedev – Livermore – Minnesota, Twin Cities – Minnesota, Duluth – Oxford – Pittsburgh – Protvino – Rutherford Appleton – Sao Paulo – South Carolina – Stanford – Sussex – Texas A&M – Texas-Austin – Tufts – UCL – Western Washington – William & Mary - Wisconsin

Minos collaboration members at Fermilab with the Near Detector surface building in the background (right)

High intensity v_{μ} beam from Fermilab to Soudan (Mn)

Two detectors, Near (1kT) and Far (5.4kT)

Primary measurement: Compare v energy spectrum in the Far Detector to the un-oscillated expectation from the Beam and Near Detector

- Observe oscillation minimum
- Confirm oscillatory behaviour in V_u sector
- Measure Δm_{23}^2 to $\sim 10\%$
- Look for evidence of $V_{\mu} \rightarrow V_{e}$ oscillations

NUMI Beam - Features

Primary Features

- •120 Gev protons extracted from main injector
- STE 8.67 μs spill, 1.9s repetition rate
- New v beam line built intense beam
 - 2.5 10¹³ protons/spill

At startup

- 300kW primary proton beam
- Neutrino energy tuneable
- Initial intensity 2.5 10²⁰ protons/year

NUMI Beam

- 120 GeV protons extracted from MI into NUMI beam tunnel
- Bend downwards (3.3° downward bend) beam must point at Soudan
- Incident on graphite target
- Focus charged mesons (π, K) with two magnetic horns pulsed with 200kA
- 675m long steel decay pipe for pions to decay (1.5 Torr, encased in 2-3m concrete)
- Hadron absorber downstream of decay pipe
- 200m rock in front of Near Detector for muon absorption
- Beam energy tuned by moving 2nd horn relative to target. Polarity selects v, anti-v

NUMI Beam - Configurations

Beam energy can be tuned by adjusting position of 2nd horn relative to target

LE beam best match for $\Delta m^2 \sim 2-3 \ 10^{-3} \ eV^2$

Both v_{μ} and $\overline{v_{\mu}}$ beams - $\overline{v_{\mu}}$ later running

First beam will be in December 2004

Beam turns on with 2.5 10²⁰ protons/year

Studies in progress to improve on this

v_{II} CC Events/year (with no oscillations)

Medium Low High 1,600 4300 9250

NUMI Beam - Status

ICHEP04, August 18, Beijing

G.F. Pearce, Rutherford Appleton Laboratory

MINOS Far Detector

Site: Soudan Mine, Minnesota, 735 km baseline

for MINOS Depth 2341ft = 2070 mwe

'Traditional' access methods!

The detector all went down this shaft

MINOS Far Detector

The completed Minos Far Detector

Data taking since ~ September 2001

Installation fully completed in July 2003.

Atmospheric v / cosmic µ data sample

5.4 kton <u>magnetised</u> tracking calorimeter, B ~1.5T484 steel/scintillator planes built in 2 supermodules2.54cm thick steel, 192 4x1cm scint. strips per plane

- orthogonal orientation on alternate planes U,V
- optical fibre *readout*

Veto shield covers top/sides for atmospheric v Multi-pixel (M16) PMTs read out with VA electronics

- 8-fold optical multiplexing
- chips individually digitised, sparsified & read out when dynode above a threshold
- excellent time resolution 1.56ns timestamps

Continuous *untriggered* readout of whole detector
Interspersed light injection (LI) for calibration
Software triggering in DAQ PCs (independent of ND)

- highly flexible : plane, energy, LI triggers in use
- spill times from FNAL to FD trigger farm under dev.

GPS time-stamping to synch FD data to ND/Beam

MINOS Near Detector

Site: Fermilab, ~ 1 km

Minos Near Detector as installation neared completion

Plane installation fully completed on Aug 11, 2004

1 kton (total mass) magnetised tracking calorimeter Same basic design as Far Detector

Partially instrumented

- 282 steel planes, 153 scintillator planes
- reduced sampling in rear planes (121-281)
 "spectrometer section" used for muon tracking

High *instantaneous* v rate, ~ 20ev/spill in LE beam No multiplexing except in *spectrometer* region (4x) Fast "QIE" electronics

- continuous digitisation on all channels during spill (19ns time-slicing). Mode enabled by spill signal.
- dynode triggered digitisation out of spill (cosmics)

GPS time-stamping / Software triggering in DAQ

- all in spill hits written out by DAQ
- standard cosmics triggers out of spill

Near Detector

Cosmic rays triggered and readout

3D view of cosmic μ read-out from the Near Detector

Installation nearing completion

Detector working!

Coil installed over coming weeks

Calibration Detector

The 3rd major Minos detector

Vital to understand energy response to reconstruct E

$$E_{\nu} = p_{\mu} + E_{had}$$

- Measured in a CERN test beam with a "mini-Minos"
 - operated in both Near and Far configurations
 - Study e/µ/hadron response of detector
 - Test MC simulation of low energy interactions
 - Provides calibration information

MINOS Sensitivity

Sensitivity for two exposures

 $(\Delta m^2 = 2.5 \ 10^{-3} \text{eV}^2, \ \sin^2 2\theta = 1.0)$

 ν_{μ} CC events

Reconstruct v_{μ} energy

$$E_v = p_{\mu} + E_{had}$$

Compare observed energy spectrum at Far Detector with un-oscillated expectation from Near Detector and Beam.

Direct measurement of L/E dependence

Observe oscillation minimum

 $\sin^2 2\theta$, Δm^2 measurement from depth and position of oscillation minimum

v_e appearance

We have Far Detector data

Cosmic muon & atmospheric analyses

Moon Shadow

All tracks

300
250
150
100

Sample of 10M muons analysed

Observed shadow of the moon

Angular resolution improved by selecting high momentum muons

Clear moon shadow – good resolution

Upward going muons

Neutrinos interact in rock surrounding detector

Upward going muons ~ 0 background

Identified on basis of timing

• electronics provides 1.56ns timestamps

Expect: 1 event / 6 days

Upward going muons

Selection

Require clear up/down resolution from timing

• 'Good track', > 2m long, > 20 planes

Calculate μ velocity from hit times, $\beta = v/c$

Good separation of up/down going μ ($\sigma_{1/\beta} \sim 0.05$)

48 upward events

Zenith angle distribution compared with MC

MC: NUANCE with Bartol '96 flux. Normalized to data

Charge Tagging using muon charge

	ν	$\overline{\mathbf{v}}$	ν, $\overline{\nu}$?
Events	13	8	27

Understanding systematics: Work in progress

Atmospheric Neutrinos

Minos designed for vs from Fermilab, not from 4π

Planar detector – Vertical gaps – Potential problem for atmospheric vs

For contained events, the veto shield significantly reduces background from cosmics entering detector through gap between planes

Signal to noise $\sim 5 \cdot 10^{-6}$ Veto shield helps

Atmospheric Neutrinos – Event Selection

Selection

- Fiducial Volume: little activity within 50cm of detector edge
- Reconstructed muon track track crossing 8 planes
- Cosmic muon rejection remove steep events
- Veto shield no *in-time* veto shield hit

95% purity
75% efficiency

Event Statistics (1.87 kton-years)

MINOS		MC	MC
PRELIMINARY	DATA	no osc**	Cosmic bg.
Before VETO	88	39	63 ± 6
VETOED	51	2	61 ± 6
Selected	37	38 ± 8	2

_Vetoed background agrees with MC expectation

^{**} Does not include acceptance systematic uncertainties

Atmospheric Neutrinos – Preliminary Data

- MC normalised to the data (no oscillations)
- Cosmic background from data is from number of vetoed events
- Statistics are still low but exposure steadily increasing!
- More data needed

Charge separation using muon curvature

Conclusions

- NUMI beam installation well advanced and on schedule
- Minos Near Detector nearing completion
 - Final plane of detector installed Aug 11, 2004!
- Minos Far Detector fully operational
 - Data taking since first planes installed, August 2001
 - Routine physics quality data taking since mid 2003
 - Cosmic ray / atmospheric neutrino studies under way
 - First direct observation of separated atmospheric neutrinos
- MINOS in good shape
 - Protons on target in December 2004
 - First beam physics runs early 2005